
Lumos User’s Guide

Steve Willoughby

4 December 2011
For Lumos Verison 0.5

Contents

1 Introduction 3
1.1 Warning and Disclaimer . 3
1.2 Supported Platforms . 3
1.3 Supported Hardware . 4
1.4 Extensibility . 4
1.5 Glossary of Components . 5

1.5.1 Hardware . 5
1.5.2 Configuration and Data 6
1.5.3 Software . 6

1.6 Licensing Information . 7
1.7 The Name of the Game . 7

2 Setting Up a Show 7

3 Creating a Sequence 13
3.1 Manual Creation of Sequence Files 13
3.2 Importing Sequences from Vixen 15

4 Adding Audio Tracks to Sequences 20

5 Checking Power Usage 21

6 Performing (Playing Back) Sequences 24

1

Document revision 0.5, 4 December 2011; for software version 0.5.
Copyright © 2009, 2011, (Software described © 2005–2008, 2011) by Steven
L. Willoughby, Aloha, Oregon, USA. All Rights Reserved.
This document is part of the Lumos Light Orchestration System software
package, distributed under the terms and conditions of the Open Software
License, version 3.0. For full details, see the file “LICENSING” distributed with
Lumos, or go to http://www.opensource.org.

2

1 Introduction

Lumos is an open-source, platform-independent software system which orches-
trates light displays. A typical application for Lumos is to control complex
Christmas light arrangements. These displays consist of pre-programmed se-
quences of circuit output changes (on, off, and various dimmer levels), either as
stand-alone patterns or synchronized to music.

Lumos is still a work in progress. This document describes version 0.5,
which is an “alpha” level release with less functionaity than ultimately planned,
and not fully tested. It is provided in this pre-release state for evaluation and
experimentation purposes while the implementation of the remainder is being
completed.

Lumos is also a class library which provides a framework for applications to
control SSRs and similar devices. The included Lumos software (for creating,
editing, and playing back sequences for such things as synchronized Christ-
mas light displays) is one example of an application suite using this frame-
work. Others exist and may yet be written in the future. For example, the
author also created a software package for running game show events, with a
computer-generated game board, control over contestant buttons and displays,
scoreboards, as well as control over stage lighting effects in sync with the game
board effects. This application incorporates the Lumos class library, and uses
it to communicate with the various hardware devices involved in those produc-
tions.

1.1 Warning and Disclaimer

This product is provided for educational, experimental or personal interest use,
in accordance with the terms and conditions of the aforementioned license agree-
ment, ON AN “AS IS” BASIS AND WITHOUT WARRANTY, EITHER EX-
PRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY OF THE ORIGINAL WORK IS WITH YOU. (See the license agreement
for full details, including disclaimer of warranty and limitation of liability.)

Under no curcumstances is this product intended to be used where the safety
of any person, animal, or property depends upon, or is at risk of any kind from,
the correct operation of this software or the hardware devices which it controls.

USE THIS PRODUCT AT YOUR OWN RISK.

1.2 Supported Platforms

Lumos is being developed on the Linux platform. It is being developed in a
platform-neutral manner and is expected to run on most current platforms, in-
cluding Linux, Unix, MacOS X, and Windows. It has been tested and works suc-
cessfully on Windows XP, Windows 7, Ubuntu Linux 8.10–11.10, and FreeBSD
8.2.

3

1.3 Supported Hardware

Lumos includes hardware device drivers for the following circuit controllers:

FireGod: Popular DIY solid-state relay controller capable of controlling 32
output channels with dimmer capability. (Interface: serial; Status: untested)

Olsen 595: Another popular DIY SSR controller, capable of controlling a set
of output channels (Lumos assumes 64 by default). (Interface: parallel;
Status: Under development; not yet ready for use.)

Grinch: We believe the Grinch DYI SSR controller has a compatible command
protocol with the Olsen 595, so Grinch users should be able to use the
Olsen 595 driver for them.

Renard: Yet another popular DIY SSR controller which can be built to control
8, 16, 24, 32, or 64 channels with dimming capability. (Interface: serial;
Status: untested.)

Lumos: A custom-designed SSR controller by the author of Lumos, capable
of controlling 48 output channels with dimming capability.1 (Interface:
serial; Status: tested OK.)

X-10 CM17a: Also known as the “Firecracker,” sends commands via built-
in RF transmitter to an X-10 receiver module. Each controlled device
requires an individual X-10 module. Current load capacity, dimming ca-
pability and other parameters vary for each individual X-10 module used.
(Interface: serial; Status: Under development; not yet ready for use.)

LynX-10: Another X-10 computer interface like the Firecracker, but directly
wired into the power system via an X-10 TW523 module or equivalent
instead of sending RF signals. It is also a more intelligent unit with a faster
communications protocol. However, all the same caveats and restrictions
inherent to X-10 systems apply. Generally, the direct SSR controllers will
give better results for fast-changing, synchronized lighting sequences than
X-10. (Interface: serial; Status: Under development; not yet ready for
use.)

1.4 Extensibility

Extending the Lumos.Device.ControllerUnit base class may be done to cre-
ate new device drivers for Lumos. Knowledge of Python programming is re-
quired. See the “HACKING.pdf” document and manual page entries “lumos-
controller(4)” and “lumos-network(4)” for more details.

1Previously, this was referred to as “48SSR” or “SSR48” until the name Lumos was settled
upon. The Lumos software accepts the legacy name “48ssr” for this unit, but that will
eventually be deprecated. The name “lumos” should be used instead.

4

1.5 Glossary of Components

A Lumos-managed light show consists of the following components. The remain-
der of this document will be devoted to a description of how they interact, so
understanding these basic terms will be helpful for understanding what follows.

1.5.1 Hardware

Power source: A supply circuit providing power to run the lights. Each indi-
vidual circuit breaker is identified in Lumos as a named “power source”
to help plan the show’s current load. By organizing your show with this
in mind, you can work to avoid overloading any circuits on your breaker
panel.

Controller: A device which takes commands from Lumos to change the output
levels on its channels. Often, the controllers are located outside near the
lights which are plugged into their output channels. They may alterna-
tively be located in a central indoor location, with extension cords running
out to the controlled loads.

Channel: Each output circuit provided by a controller is referred to as a chan-
nel.

Network: A communications interface provided to connect the PC running
Lumos with a set of hardware controllers. These come in four different
types:

Serial: Plugged into a serial port on the PC, sending 8-bit bytes seri-
ally over RS-232 or RS-485 (or some other sort of serial hardware
protocol) to a set of one or more controllers. Whether one or many
controllers may exist on the same serial network depends on the type
of controllers involved. Ones which have individual addresses as-
signed to them can share a serial network with other controllers of
the same make (i.e., their serial protocols must be 100% compatible
in order for commands addressed to one to not confuse the others).
Examples of controllers using this type of network include the Fire-
God (up to 4 per network), Lumos (up to 16 per network), LynX-10
(one per network), and the Renard (up to 128 per network).

Serialbit: (Short for “serial, bit-at-a-time” network.) Technically, all
serial networks are bit-at-a-time, but rather than the usual asyn-
chronous scheme of transmitting an entire word of bits over the TxD
line, this type of network employs synchronous bit-at-a-time trans-
fers by manipulating the serial port’s control lines rather than the
data lines. It might be possible to connect a serial and serialbit net-
work to the same PC serial port, but this is not recommended and
not verified to work. Only one controller at a time can usually be
connected to a serialbit network. One example controller using this
type of network is the Firecracker (X-10 CM17a).

5

Parallel: Full eight-bit parallel data transfer to connected controllers.
Currently no known controllers use this type of network.

Parbit: Synchronous bit-at-a-time data transfer in a manner similar to
the serialbit network type, but using the control signal lines of the
PC’s parallel port instead of the serial port. Examples of controllers
using this type of network include the Olsen 595 and Grinch. Only
one controller at a time may be attached to the parbit network, typ-
cially (but this depends more on the controller device than the net-
work).

Loads: The lights or other devices controlled by the controllers.

1.5.2 Configuration and Data

The following data sets provide the necessary context and programming infor-
mation for Lumos to perform your show using the hardware devices connected
to it:

Show configuration: Lumos uses a show configuration file to describe all the
hardware elements in play. This file is described in detail in the manual
page “lumos-config(5).”

Sequence: A programmed sequence of on/off and dimmer level change events
to be sent to the various controllers managed by Lumos. Each sequence is
stored in a text file as described in the manual page “lumos-sequence(5).”

Scene: A collection of one or more sequences which together comprise a com-
plete individual scene (such as one song) from the point of view of the
audience.

Show: The full set of scenes, hardware, and everything comprising a single in-
stance of your display. For example, “Our Christmas Lights for 2009”
might be a show, which contains scenes such as the song “God Rest
Ye Merry, Gentlemen” which includes sequences such as “mega-tree light
chasing pattern”.

1.5.3 Software

The following Lumos software components are available for use to accomplish
the creation and playback of the scenes in your light show.

lcheck: A utility to check a show configuration file for basic errors.

lplay: Plays (or performs) a list of sequence files on the hardware configured
for a show.

vixen2lumos: An import utility to assist with using Lumos to play sequences
previously created with the Vixen light control program.

6

1.6 Licensing Information

Lumos is a copyrighted work, distributed under the terms and conditions of the
Open Software License version 3.0. See the “LICENSE” file which accompanied
the software distribution for full details, or see www.opensource.org.

1.7 The Name of the Game

“Lumos” is an acronym of lumen, the Latin word for “light,” and the initial
letters of “orchestration” and “system.” Hence, “Light Orchestration System.”

2 Setting Up a Show

Your show planning begins before doing anything with the Lumos software.
First, look at the area you’ll be lighting as something of a “canvas” and think
of what lighting effects you wish to create in that space. Keep in mind what
resources you have available, including not only what lights you have on hand
to install, but also how many amps of available power you have to supply it.
Think of what music you might want to play with it (if any), and what general
mood you wish to create in each scene.

Once you have an idea what you will be accomplishing, sketch out the loca-
tion of all the lights and other devices, and start assigning them to controllers.
You’ll want to keep in mind where you want the controllers to be located, and
how many amps they’ll be supplied, when assigning loads to their output chan-
nels.

Having done that, you’ll need to create the Lumos show configuration file
to describe your hardware setup. For the simple example we’ll walk through in
this tutorial, we will be lighting up a tree in three colors of lights, which will be
controlled on channels 10, 11, and 12 of a FireGod controller. Additionally, we
have red and green floodlights which already happen to be rigged up to X-10
dimmer modules (on addresses “C2” and “C5” respectively), so we’d like to
control those as well. We have a LynX-10 computer interface to communicate
with our X-10 home automation system.

A future release of Lumos is expected to have a convenient GUI interface
for managing show configuration profiles, but at present, setting up the show
configuration involves editing a text file. The format is easy to edit, however,
so this shouldn’t prove too difficult. You will need to use a text editor which
will produce plain ASCII files (such as vi, EMACS, or Notepad).

You can call the file anything you like, although the name should be descrip-
tive of the show. For best results, the file name should not contain spaces or
special characters which would require quoting or escaping to use in command
lines. By convention, the show configuration files have a suffix of “.conf” but
this is not required.

To begin, we create a [show] section describing the basic elements of the
show. We’ll begin by giving the title and description of the show itself. This

7

section also includes a list of all the power sources and communications networks
we’ll be using.

In our case, the FireGod controller will be plugged into a 20A outdoor plug
on circuit breaker #15 on our panel. The floodlights are wired to the 15A circuit
on breaker #22B.

The FireGod and LynX-10 will be on separate serial ports, named “tree”
and “floods,” respectively.

[show]

title=A Minimal Light Show

description=Just an example for the tutorial.

powersources=15 22b

networks=tree floods

Figure 1: Sample [show] Section

Figure 1 shows the configuration file section which informs Lumos of what
was just described in these paragraphs.

Note that there are more details about each of these elements, but we’ll de-
scribe them individually in their own sections. This just lets Lumos know what
elements exist. Also note that the list of power sources and networks are sepa-
rated by spaces in these values. We could have named them anything we wanted.
We chose “15” and “22b” because they matched the labels on the circuit panel,
and the names “tree” and “floods” because they were reasonably descriptive.
The names chosen should contain just letters, digits, and underscores (“_”) for
best results.

Next, we’ll describe the power sources themselves. There are only two things
Lumos needs to know about each power source: the current load capacity it
offers to the light show (i.e., if a power circuit has other loads, be sure to account
for them before telling Lumos how much available current it has on that circuit),
and whether that circuit is protected by GFCI circuit breakers.

Important safety note: Providing this information to Lumos does
not guarantee it will not overload anything! You are still able to
define a sequence which would overload your panel if you choose to
do so! These values in the configuration are intended to be a helpful
guide to yourself when planning your show. Do not rely on Lumos to
ensure your show stays within safe operating parameters. That’s not
its function.

In Figure 2 we add two new sections to our configuration file, each to
define the specific attributes of one of the power sources mentioned in the
powersources line of the [show] section. Note that the section names include
the power source names we invented earlier.

Now we need to define the particulars for the networks “tree” and “floods”
we mentioned in the networks line of the [show] section. These are both
traditional serial networks, so we’ll need to specify such parameters as baud

8

[power 15]

amps=20

gfci=yes

[power 22b]

amps=15

gfci=yes

Figure 2: Sample [power...] Sections

rate and so forth for each one. We will also list which controllers are plugged
into each network here, although the specifics about those controllers will be
explained later in their own sections.

Figure 3 shows the two new sections added to the configuration file to de-
scribe these networks. We made up the names “fgtree” to refer to our FireGod
SSR controller directing the lights on our tree, and “home_auto” to refer to the
home automation X-10 interface (the LynX-10 unit).

[net tree]

description=serial net for FireGod on the tree

units=fgtree

type=serial

port=0

baudrate=9600

[net floods]

description=flood lights on X-10 control

units=home_auto

type=serial

port=1

baudrate=1200

Figure 3: Sample [net...] Sections

The controller units themselves are now each defined in a new section which
defines the type of controller used, along with any specific parameters required
by that controller.

The list of controllers supported by this version of Lumos is summarized in
Table 1.

In our case, we need to add a section for the FireGod controller (shown
in Figure 4). In the [net tree] section, we chose to refer to this particular
controller as “fgtree,” so the details for this controller unit are described in a
section called “[unit fgtree].”

There are a couple of things to note on this section. Each “[unit...]”

9

Type Network Channels Extra Parameters

cm17a serialbit A1–P16 (none)
firegod serial 0–31 address, channels
lumos serial 0–47 address
lynx10 serial A1–P16 (none)
olsen595 parbit 0–63* channels
renard serial 0–63* address, channels

*(or the highest channel number actually implemented on the controller.)

Table 1: Supported Controller Types

[unit fgtree]

type=firegod

address=0

power=15

Figure 4: Sample [unit fgtree] Section

section requires at least two lines: “type,” which should be one of the type
names listed in Table 1, and “power,” which is the name of the power source
this unit feeds from. In this case, this FireGod controller is plugged into circuit
15 from our breaker panel (described above in the [power 15] section).

According to Table 1, a FireGod controller also needs two additional fields:
“address,” which we specify here as 0, and “channels,” which is the number
of channels the unit supports (since not every FireGod controller may be built
with the same number of outputs). Note that in this example we did not include
this line, so Lumos assumes the default value of 32 channels.

We will also add a [unit home_auto] section for the X-10 lights (see Fig-
ure 5).

[unit home_auto]

type=lynx10

power=22b

Figure 5: Sample [unit home auto] Section

Finally, we need to specify what loads are plugged into each output channel.
Each of these is described in a section named with the controller unit name and
channel name. For example, the output channel #10 of our FireGod controller
unit would be described in a section called [chan fgtree.10]. Figure 6 shows
the channel definitions for the outpus from this controller.

For each output channel, we specify a descriptive name for the output, the
load in amps, and whether Lumos should try to dim that load.

10

[chan fgtree.10]

name=Tree, red

load=.3

dimmer=yes

[chan fgtree.11]

name=Tree, green

load=.3

dimmer=yes

[chan fgtree.12]

name=Tree, blue

load=.3

dimmer=yes

Figure 6: Sample [chan fgtree...] Sections

For the flood lights defined as shown in Figure 7, we want to keep the
lights warm all the time, so we add one more line to each of their sections:
“warm=10.” This means that the output for those channels should never go
below 10% regardless of what any sequence specifies.

[chan home_auto.C2]

name=Flood, red

load=1

dimmer=yes

warm=10

[chan home_auto.C5]

name=Flood, green

load=1

dimmer=yes

warm=10

Figure 7: Sample [chan home auto] Sections

We’ll save this data into a file called myshow.conf, and run the lcheck

utility to check for errors in the file. (Of course, a program such as lcheck

can’t check for everything, so please also exercise due dilligence in creating a
correct configuration file, too.)

$ lcheck myshow.conf

ValueError: Address 0 out of range for a FireGod SSR Controller Module

This uncovered an error we inadvertently made: FireGod controllers use

11

addresses in the range 1 ≤ x ≤ 4, so there can’t be a unit #0. We’ll edit
the [unit fgtree] section to read “address=1” instead and re-run the check
utility:

$ lcheck myshow.conf

Now at least lcheck is happy with the file. It could also be useful to re-run
this program with the --verbose option. This produces a text summary of the
show configuration, which is convenient to refer to when wiring up the hardware
or working with your sequences:

$ lcheck --verbose myshow.conf

SHOW DESCRIBED BY FILE ’myshow.conf’:

Title: A Minimal Light Show

Description: Just an example for the tutorial.

POWER SOURCES:

15 20A [GFCI]

22b 15A [GFCI]

COMMUNICATIONS PARAMETERS

NETWRK PORT SPEED BPSXR DESCRIPTION

floods 1 1200 8n1-- flood lights on X-10 control

tree 0 9600 8n1-- serial net for Firegod on the tree

DEVICE CONTROLLERS:

NETWRK UNIT POWER DESCRIPTION

floods home_auto 22b LynX-10/TW523 Controller

tree fgtree 15 FireGod SSR Controller (32 channels), module #1

--

DEVICE CHANNELS:

UNIT CHAN POWER LOAD D WARM DESCRIPTION

home_auto C2 22b 1A D 6% Flood, red

home_auto C5 22b 1A D 6% Flood, green

fgtree 10 15 0.3A D 0% Tree, red

fgtree 11 15 0.3A D 0% Tree, green

fgtree 12 15 0.3A D 0% Tree, blue

--

POWER LOAD SUMMARY:

15 Loaded to 4%

22b Loaded to 13%

Total allocated load: 2.9 Amps

See the manual entry for “lumos-config(5)” for full details about the config-
uration file’s format and contents.

We’re now ready to start defining sequences for our show.

12

3 Creating a Sequence

Sequences are stored in simple text files which describe each output channel
change event in the show, and when that event is scheduled to occur.

Lumos will ultimately include a GUI scene editing tool which will allow for
easy creation of sequences, previewing them, editing them, and synchronizing
them to music. In this pre-release state, however, that functionality does not
yet exist.

This leaves us with two options, then, in the mean time. We can create
sequence files manually, or we can import sequences from another tool.

3.1 Manual Creation of Sequence Files

The sequence file format is fairly simple to understand, and therefore creating
one in a text editor is quite possible. The problem with attempting to do this
is simply that a typical sequence has such a high number of events, this can be
an overwhelmingly tedious task.

For testing Lumos or experimenting with it, however, this approach may still
be useful. The full details for this file format are documented in the manual
entry for “lumos-sequence(5)”.

We’ll manually create a sequence file now which will define the following
sequence of events:

00:00.0 Start fading up the red flood lights (over 2 seconds)

00:01.0 Turn on red lights in the tree

00:05.0 Flash the red, green, and blue lights in sequence for 1/10 second each.

00:05.8 Turn off the tree lights.

00:06.0 Crossfade flood lights to green over 2 seconds.

00:07.0 Turn on the tree red at 1/2 brightness.

00:10.0 Fade everything to black over 1.5 seconds.

Sequence files use a basic comma-separated value (“CSV”) format. Each line
of the file is a “record” which describes a single distinct aspect of the sequence.
These records are themselves divided into “fields” which are separated from
each other by commas. The first field in each record determines what type of
record it is.

A sequence file always begins with the record “V3” to indicate this is a
version 3 Lumos sequence file.

Following this is a set of controller unit definition records describing the
controllers used by this sequence. The initial field of each of these is “U”; the
remaining fields give the controller name as defined in the show configuration,
followed by a list of the output channels used in this sequence. Figure 8 shows

13

V3

U,fgtree,10,11,12

U,home_auto,C2,C5

Figure 8: Sequence File: Controller Unit Definitions

the first three lines of our sequence file, indicating the controller units we’ll be
using.

From here on, we add a “time” record to indicate when in the sequence the
following set of events will take place, then the events themselves, and so on.

Time records consist of the letter “T” followed by a number of milliseconds
from the beginning of the sequence.

Event records describe what takes place at any given point in time. The
current version of Lumos uses just one type of event, described in an “E” record.
These have four additional fields: the controller unit number, channel number,
value to set the output channel to, and the number of milliseconds over which
to effect that change in level. The unit and channel numbers are numbered
starting with 0 for the first unit listed in the sequence file, and starting with 0
for the first channel listed for any given controller.

This means that given our unit definition for this file:

U,fgtree,10,11,12

U,home_auto,C2,C5

we have the following assignment of unit and channel numbers for use within
this sequence file:

Unit # Channel # Configuration ID

0 0 fgtree.10

0 1 fgtree.11

0 2 fgtree.12

1 0 home auto.C2

1 1 home auto.C5

So our first event, at time 00:00.000, which fades the red flood lights (con-
troller 1, channel 0) to 100% over 2 seconds (2,000 milliseconds) would be entered
as:

T,0

E,1,0,100,2000

Then, at 00:01.000, we turn on the red tree lights (controller 0, channel 0) to
100% instantly:

T,1000

E,0,0,100,0

14

At 00:05.000, we start cycling through controller 0’s channels 0–2 at 0.100-
second intervals:

T,5000

E,0,0,0,0

E,0,1,100,0

T,5100

E,0,1,0,0

E,0,2,100,0

T,5200

E,0,2,0,0

E,0,0,100,0

...

The full text of the sequence file is shown in Figure 9.
See the manual entry for “lumos-sequence(5)” for full details about this file

format.
If you wish, you can use a program which can edit CSV format files (e.g., a

spreadsheet). Figure 10 shows our sequence file being edited in Gnumeric (an
open source spreadsheet program).

3.2 Importing Sequences from Vixen

An alternative way of creating Lumos sequence files is to import them from
another program. This can be especially convenient during the period before
Lumos’ own GUI sequence editor is released. Currently Lumos includes a simple
import utility for the popular sequencing program Vixen.

An imported sequence won’t quite be the same as a native Lumos sequence,
though, due to the differences between how each system operates. Vixen, for
example, handles events as individual snapshots capturing the state of every
output channel at each instant in time. A typical device plug-in would just take
that data and update every channel on each controller, regardless of whether
they all changed state or just a single channel did. While several SSR controllers
expect to be updated that way, not all do, and individually addressing the
specific channels which change can be more efficient (depending on how much
is being updated at one time). Lumos handles channel events separately so the
choice of whether to send complete device updates or individual channel changes
can be made by each device driver as appropriate for the hardware it’s driving.

This means that imported sequences including gradual dimmer level changes
will appear in Lumos as a series of discrete level-set events instead of one.

The vixen sequence import utility, vixen2lumos, is designed to convert stan-
dard Vixen sequences.

Note that the import works best when Vixen is set to a profile which uses
an actual device plug-in (i.e., not just a “preview window” plugin). Using, for
example, the Renard driver works well:

15

V3

U,fgtree,10,11,12

U,home_auto,C2,C5

T,0

E,1,0,100,2000

T,1000

E,0,0,100,0

T,5000

E,0,0,0,0

E,0,1,100,0

T,5100

E,0,1,0,0

E,0,2,100,0

T,5200

E,0,2,0,0

E,0,0,100,0

T,5300

E,0,0,0,0

E,0,1,100,0

T,5400

E,0,1,0,0

E,0,2,100,0

T,5500

E,0,2,0,0

E,0,0,100,0

T,5600

E,0,0,0,0

E,0,1,100,0

T,5700

E,0,1,0,0

E,0,2,100,0

T,5800

E,0,2,0,0

T,6000

E,1,0,0,2000

E,1,1,100,200

T,7000

E,0,0,50,0

T,10000

E,*,*,0,1500

Figure 9: Sample Sequence File

16

Figure 10: Sequence File in Spreadsheet Editor
17

Create a profile which uses the set of output channels you need, select the
Renard plugin, and then define a new “Vixen standard sequence”:

Now proceed to build the sequence in Vixen as normal. Figure 11 shows the
same sequence we discussed in the previous section, but created using Vixen
rather than by manual editing of the file.

The saved sequence file (in our example, “sample2.vix”) can then be im-
ported into Lumos using vixen2lumos. The first step is to use the --info

option to be sure the file is readable and that its general parameters look close
to what we’d expect. This is just a simple sanity check before we get too far:

$ vixen2lumos --info --input=sample2.vix

Loaded sequence data from Vixen:

Duration: 00:11.500

Value Range: 0 - 255

Channels: 0

18

If you see something like this (note the “Channels: 0”), it means the sequence
file does not include the profile data. Sometimes the combination of plugins will
pull this information into the sequence file, but if not, you can ask Vixen to
merge your profile data into the sequence. Pull down the “Profiles” menu and
choose “Flatten profile into sequence,” then save your sequence again.

Now re-check with the --info option:

$ vixen2lumos --info --input=sample2.vix

Loaded sequence data from Vixen:

Duration: 00:11.500

Value Range: 0 - 255

Channels: 5

0 = "Tree, red" RGB=FF0000 out=0

1 = "Tree, green" RGB=00FF00 out=1

2 = "Tree, blue" RGB=0000FF out=2

3 = "Floods, red" RGB=FF0000 out=3

4 = "Floods, green" RGB=00FF00 out=4

That’s better—we see the five channels we need, and the duration looks
right. Now we need to create a “mapping file” which tells Lumos which channels
defined in the Vixen sequence files correspond to which channels in the Lumos
show configuration.

The easiest way to do this is to let vixen2lumos do most of the work for us,
by using the --genmap option:

$ vixen2lumos --genmap=sample2.map --input=sample2.vix

This will create a new file, sample2.map, which is a list of the channels found
in the sequence file sample2.vix. The file contains some comments describing
the file and its contents, followed by these channel map definitions:

0,"Tree, red",CONTROLLER,CHANNEL

19

1,"Tree, green",CONTROLLER,CHANNEL

2,"Tree, blue",CONTROLLER,CHANNEL

3,"Floods, red",CONTROLLER,CHANNEL

4,"Floods, green",CONTROLLER,CHANNEL

We need to edit these to assign each of them to a Lumos controller and channel
name (as defined in our show configuration file):

0,"Tree, red",fgtree,10

1,"Tree, green",fgtree,11

2,"Tree, blue",fgtree,12

3,"Floods, red",home_auto,C2

4,"Floods, green",home_auto,C5

See the manual entry for “lumos-channel-map(5)” for the full details on this file
and what can appear in it.

With this mapping in place, we are ready to convert the Vixen sequence to
a Lumos sequence file. We do this by running the converter one last time:

$ vixen2lumos --input=sample2.vix --map=sample2.map \

--conf=myshow.conf --output=sample2.lseq

The sequence file sample2.lseq can now be played in Lumos.

4 Adding Audio Tracks to Sequences

Each sequence may have an audio track attached to it. The audio will begin
playing when the sequence begins running in lplay. If the audio is not finished
playing by the time the sequence ends, the audio playback will be stopped at
that time.

To attach an audio file to a Lumos sequence, you need only add a single line
to the sequence file:

A,test.ogg,100

This will cause the audio file test.ogg to play at 100% volume level. There
are other optional fields which may also be specified to control mono or stereo
output, sample frequency, sample bits, and buffer sizes, but these are not usually
necessary for you to adjust. See the documentation in lumos-sequence(4) for
full details.

Audio files attached to Vixen sequences imported via vixen2lumos should
generally already have the file attachment record added for you to the sequence.
Make sure the audio file itself is copied to the directory lplay is reading from.

Many popular audio file formats are supported. We recommend using OGG
or WAV files.

20

5 Checking Power Usage

Before playing your sequences on real hardware, you should check to be sure
your sequence doesn’t cause an overload on one of your circuits. Ultimately,
your setup needs to be planned and put together by someone with adequate un-
derstanding of electrical load management, and protected with circuit breakers
of the correct type to ensure your safety. The Lumos system cannot guarantee
any particular situation won’t be hazardous, that’s your responsibliity as you
arrange your show and the hardware involved. However, the following procedure
is a valuable tool to assist you in doing that.

The Lumos Power Meter utility lpower will run through a set of sequence
files which you intend to play together as a scene, and calculate the power
consumed by that scene.

To get a basic report, run:

$ lpower --conf=myshow.conf sample2.lseq

NOTE

The following circuit(s) had power draining at the end of the show.

If they remain on after the show, they will consume additional

power beyond what this report is showing.

This final power level was the end-state at the last instant of the

sequence, so is not figured into the calculations reported.

0.13 amps on 22b

Total Runtime: 00:00:11.500 (11,500 mS)

Total Power Used: 0.000430 kWh

POWER SOURCE PEAK (A) AVERAGE (A)

15 0.30 0.17412

22b 1.87 0.94638

The big warning message at the beginning of the report is letting us know
that after the scene is finished, some units were still drawing power (either
we left some of them running, or they have a “warm” setting which keeps a
little power flowing into them at all times. So we are aware that more power
will continue being drawn if we leave things as they are after the scene has
concluded. Specifically, circuit “22b” is still seeing a 0.13 A load.

For the duration of our 11.5 second sequence, we consumed a very small
number of kilowatt-hours (less than one-thousandth), and we see what the peak
load was for every power supply circuit, as well as the average current levels
during the scene.

If we know how much we’re paying for power, we can let lpower calculate
an estimated price for the scene, as well. Suppose we pay 6¢ per kilowatt-hour:

$ lpower --conf=myshow.conf --price=0.06 sample2.lseq

.

.

21

.

Total Runtime: 00:00:11.500 (11,500 mS)

Total Power Used: 0.000430 kWh

Total Energy Cost: $0.0000 (~$0.00) @ $0.0600/kWh

POWER SOURCE PEAK (A) AVERAGE (A)

15 0.30 0.17412

22b 1.87 0.94638

The cost for this little sequence turns out to be 0.0026¢, which is rounded
off to $0.0000 in this report.2

Note: Power rate schedules can be complex. Lumos’ lpower utility is not
designed to predict your power bill with complete accuracy, but only to serve
as a basic guide for estimation purposes, primarily for circuit loading, not for
billing.

The lpower program assumes as 120 V line power voltage in its calculation of
kilowatt-hours.3 If your power is at a different voltage, you can use the --volts
option, like so:

$ lpower --conf=myshow.conf --volts=110 sample2.lseq

.

.

.

Total Runtime: 00:00:11.500 (11,500 mS)

Total Power Used: 0.000394 kWh

POWER SOURCE PEAK (A) AVERAGE (A)

15 0.30 0.17412

22b 1.87 0.94638

If you want a detailed description of exactly what power is being used by
which circuits at every instant during your scene, use the --graph-data option,
which will cause lpower to dump a CSV file containing this information:

$ lpower --conf=myshow.conf --graph-data=sample2data.csv sample2.lseq

.

.

.

We can then open the file sample2data.csv in any program which under-
stands CSV (comma-separated value) files, including a spreadsheet program
such as Microsoft Office Excel, as shown in figure 12.

2Actually, although Lumos shows the value with a dollar sign in front of the value, any
currency system will work. You just indicate how many “monetary units” you are charged
per kilowatt-hour, and the number of those units Lumos estimates you’ll be charged, down to
1/10,000 unit.

3It uses the simple formula of P = I × E to convert amps (I) and volts (E) to watts (P).

22

Figure 11: Sample Sequence in Vixen Editor

Figure 12: Power usage data in Excel

23

The first column (“A”) is the elapsed time in the scene. The other columns
are the amps drawn by each circuit starting at that point in time, continuing
on until the next event time (the next row of the spreadsheet).

Many programs can analyze this further. For example, using Excel we can
select “Insert,” “Charts (Scatter),” “Scatter with straight lines,” and a nice
graph is produced showing our power usage, as shown in figure 13. The x axis
is in seconds, and the y axis is in amps.

Figure 13: Power usage graphed in Excel

6 Performing (Playing Back) Sequences

The playback function in Lumos is currently fairly simple, although much more
development and sophistication is planned. For now, the lplay program will
accept one or more sequence file names on its command line and will play each
in turn, sending the appropriate commands to the attached controller devices.

To play the sample2.lseq file we created in the previous section, we would
simply execute this shell command:

$ lplay --conf=myshow.conf sample2.lseq

The lplay program also includes a test mode, where no actual commands
will be transmitted. It will, however, go through the same playback process,
including timing of events, and print the event actions on its standard output.
This may be of use in sanity-checking sequence files or diagnosing problems.

$ lplay --test --conf=myshow.conf sample2.lseq

24

ACTUAL------ SCHEDULED--- -----CONTROLLER ACTION--------------

00:00:00.199 00:00:00.200 home_auto set_channel(’C2’, 1)

00:00:00.299 00:00:00.300 home_auto set_channel(’C2’, 2)

00:00:00.399 00:00:00.400 home_auto set_channel(’C2’, 3)

00:00:00.599 00:00:00.600 home_auto set_channel(’C2’, 4)

00:00:00.699 00:00:00.700 home_auto set_channel(’C2’, 5)

00:00:00.799 00:00:00.800 home_auto set_channel(’C2’, 6)

00:00:00.899 00:00:00.900 home_auto set_channel(’C2’, 7)

00:00:01.000 00:00:01.000 fgtree set_channel(10, 100)

...

25

